A Web-application to reformulate recipe through optimization: proof of concept

Romane Poinsot^a. Matthieu Maillot^a. Rozenn Gazan^a. Florent Vieux^a

^a Morseille. France

Introduction

Objective

Improving the nutritional quality of food products through reformulation is a key approach to improve diet quality and to reduce the prevalence of non-communicable diseases

Provide a web application able to take into account impact of process when:

-Estimating the nutritional composition of processed foods -Improving the nutritional content through recipe optimization

Materials and Methods

Description of the Web-app:

Input

Recipe	Ingredients		gets	The web app was developed under R-Shiny package			
Quantities of	Nutrient composition,	User nutritional targets & ingredients constraints Output					
ingredients & cooking	retention & yield			European Food Information Resource			
methods	factors						
				impact of processes on food nutrients content			
		NUTRI-SCORE		Content			
1) Estimation of th	ne nutritional content	¹ Based on linear programming, the					
				optimization functionality automatically			
	2) Optimized recipe ¹	corrects the amount of ingredients to meet the selected nutritional targets and					
				ingredients constraints			

Proof of concept:

Traditional Czech Bramborak dish **Input:** Recipe and ingredients information was taken from previous study². Targets were set to improve saturated fatty acids (<4g/100g), sodium (<360mg), fiber (>2.1g/100g) and proteins (>12% E) contents simultaneously while keeping acceptable proportions in amounts of milk. flour and eggs (same as in initial recipe)

Output: Nutri-Score was used as nutritional indicator for comparing nutritional quality of the initial and the optimized Bramborak recipes

	Results			
1) Estimation of the nutritional content:			Initial (g)	Optimized (g)
NUTRI-SCORE	The initial Bramborak was ranked C according to the	Garlic	0.8	1.3
ABCDE	Nutri-score.	Wheat flour	18.0	29.5
	NULLI-SCULE.	Eggs	3.6	5.9

2) Optimized recipe:

The Web app suggests **increasing** amounts of garlic, wheat flour, eggs, and **decreasing** amounts of potatoes. lard and salt (Table 1).

The optimized Bramborak reaching nutritional targets was **ranked B**.

Potatoes	68.6	58.0
Lard	8.1	4.4
Salt	0.9	0.7

Table 1. Initial and optimized quantities of raw Bramborak ingredients, for 100g

Conclusion

Organoleptic qualities of the optimized recipe were not taken into account but adding more constraints on the amount of ingredients could help to design a more acceptable recipe. This web-application needs to be expanded with additional nutrient compositions of ingredients and fine-tuned according to food industry needs.

²Machackova. Giertlova. Porubska. Roe. Ramos. Finglas. EuroFIR Guideline on calculation of nutrient content of foods for food business operators. Food chemistry. 2018